Statistics 1 (EN)
Teacher
KHALEGHI Azadeh
Department: Statistics
ECTS:
4
Course Hours:
19.5
Tutorials Hours:
16.5
Language:
English
Examination Modality:
écrit+CC
Objective
This course presents the theoretical bases of statistical modelling, essentially in a parametric framework. Preference is given to the inferential approach, and we deal primarily with parameter estimation methods and their properties, particularly in terms of optimality (asymptotic or finite distance).
Planning
General principles- The aims of statistics, the various approaches (inferential, Bayesian). Types of statistical models (parametric, semi- and non-parametric). Sampling, information given by a sample (Fisher, Kullback), statistics (exhaustive, free), exponential models.
Estimation- Estimation problem. Decision-making approach: admissibility. Eliminating estimation bias: optimality, Cramér-Rao bound, efficiency. Asymptotic estimation: maximum likelihood, moments method, asymptotic efficiency. Bayesian estimation: Bayes' formula, Bayes estimator, subjective and objective approaches.
References
Lehmann E.L. et G. Casella (2003) Theory of point estimation, 2nd edition, Springer-Verlag [21 LEH 00 D]
Tsybakov A. (2006) Polycopié du cours de Statistique Appliquée, Université Pierre et Marie Curie. Disponible à l'adresse : www.crest.fr/ckfinder/userfiles/files/Pageperso/tsybakov/StatAppli\_tsybakov.pdf
Wasserman L. (2004) All of Statistics, Springer-Verlag [21 WAS 00 A]
van der Vaart, A. W. (1998-10-13). Asymptotic Statistics (1 ed.). Cambridge University Press.