ENSAE Paris - École d'ingénieurs pour l'économie, la data science, la finance et l'actuariat

Méthodes numériques en ingénierie financière

Enseignant

CHASSAGNEUX Jean-François

Département : Finance

Objectif

Participants of this course will master computational techniques frequently used in mathematical finance applications.

 

Prerequisites: Stochastic processes / stochastic calculus, Numerical Analysis, Derivatives, Command of Python

TDs: In the form of ipython notebooks

Plan

1. Brief introduction to asset price modeling and option pricing

  • Basic stochastic models in finance
  • Overview of numerical methods for option pricing

2. Monte Carlo methods for pricing

  • Basics of MC simulation and price estimation in the Black-Scholes Model
  • Variance reduction techniques
  • Euler schemes and applications to pricing in local volatility models
  • Computing greeks

3. Option pricing via PDEs

  • Finite difference approximation of Black-Scholes PDE
  • American options and free boundary problems

4. Transformation based methods

  • Affine models
  • Option pricing via Fourier transforms

5. Probabilistic numerical methods for non-linear pricing

  • American options (Tsitsiklis-Van Roy, Longstaff-Schwarz methods)
  • Market with imperfections and non-linear pricing (BSDEs)
  • Dynamic programming vs. shooting method (Non linear regression)

Références

·      Achdou, Yves; Pironneau, Olivier. Computational methods for option pricing. Frontiers in Applied Mathematics, 30. SIAM, Philadelphia, PA, 2005.

·      Björk, Tomas. Arbitrage theory in continuous time. Third edition, OUP Oxford, 2009.

·      Gatheral,  Jim. Volatility Surface: A Practitioner’s Guide. Wiley, 2006.

·      Glasserman, Paul. Monte Carlo methods in financial engineering. Springer, 2003.

·      Hilber, Norbert; Reichmann, Oleg; Schwab, Christoph; Winter, Christoph. Computational methods for quantitative finance. Springer, 2013.

·      Hirsa, Ali. Computational methods in finance. Chapman & Hall/CRC Financial Mathematics Series. CRC Press, Boca Raton, FL, 2013.

·      Lamberton, Damien; Lapeyre, Bernard. Introduction to stochastic calculus applied to finance. Second revised edition. Chapman & Hall/CRC, 2008.

·      Seydel, Rüdiger U. Tools for computational finance. Fourth edition. Universitext. Springer-Verlag, Berlin, 2009.

·      Shreve, Steven E. Stochastic calculus for finance II: Continuous-Time models, Volume 11. Springer Science & Business Media, 2004.

·      Additional lecture material will be provided by the instructors.