Fondements mathématiques des probabilités
Enseignant
KORBA Anna
Département : Statistics
Crédits ECTS :
3
Heures de cours :
18
Heures de TD :
15
Langue :
Français
Modalité d'examen :
écrit+CC
Objectif
Ce cours introduit les bases mathématiques de la théorie des probabilités : la théorie de la mesure et celle de l’intégration au sens de Lebesgue.
Acquis de la formation : à l’issue de l'enseignement, l’étudiant saura :
– Enoncer les définitions principales et les propriétés élémentaires de la théorie de la mesure, et des espaces $L^p$
– Appliquer les théorèmes fondamentaux de l’intégration
– Manipuler les intégrales contre des mesures quelconques : changement de mesure, application de Fubini, calcul d’intégrale à paramètres
Modalités d'évaluation :
La note finale du cours sera la moyenne de la note de contrôle continu (50%) et de l'examen final écrit (50%).
La note de contrôle continu (CC) est composée de trois éléments, notés chacun sur vingt points : (i) la note de mi-parcours, (ii) la note de présence en TD, lesquels sont obligatoires, (iii) la note de participation en TD. Elle est calculée ainsi : 50% de la note de mi-parcours + 25% de la note de présence + 25% du maximum entre la note de participation et la note de mi-parcours.
La note de présence, aussi appelée note d’assiduité, est calculée selon la grille disponible sur l’Intranet de l'école.
Plan
THEORIE DE LA MESURE
- Tribus et parties d'un ensemble – Définition. Tribu engendrée, tribu image réciproque, produit d’espaces mesurables.
- Mesure, espace mesuré – Définitions, propriétés élémentaires, caractérisation d’une mesure finie.
- Prolongement d'une mesure et applications – Théorème de prolongement, mesure extérieure, mesure de Borel, ensembles négligeables, tribu et mesure complétée, tribu et mesure de Lebesgue, produit fini d’une famille d’espaces mesurés.
- Applications mesurables – Définition, fonctions boréliennes, exemples, propriétés, transport d’une mesure, mesure image, fonctions étagées sur un espace mesurable: définition et théorème d’approximation.
- Théorie de la mesure et probabilités
INTEGRATION
- Intégration des fonctions mesurables positives – Intégrale d’une fonction étagée, d’une fonction mesurable, propriétés, théorème de la convergence monotone (Beppo-Lévi), lemme de Fatou, mesures à densité, théorème de changement de variable, théorème de Fubini-Tonelli.
- Intégration des fonctions quelconques – Intégrale d’une fonction quelconque, espaces $L^p$, propriétés, théorème de la convergence dominée, applications (continuité et dérivation sous le signe somme), théorème de Fubini, convolution
Références
BRIANE M et PAGES G. : Théorie de l’intégration, VUIBERT, 1998 [10 BRI 00 A].
GRAMAIN A. : Intégration, HERMANN [16 GRA 00 A].